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Actual EvapoTranspiration (ET) represents the water consumption in watersheds; distinguishing between natural and
anthropogenic contributions to ET is essential for water conservation and ecological sustainability. This study pro-
posed a framework to separate the contribution of natural and anthropogenic factors to ET of human-managed land
cover types using the Random Forest Regressor (RFR). The steps include: (1) classify land cover into natural and
human-managed land covers and then divide ET, meteorological, topographical, and geographical data into two
parts corresponding to natural and human-managed land cover types; (2) construct a natural ET (ETn) prediction
model using natural land cover types of ET, and the corresponding meteorological, topographical and geographical
factors; (3) the constructed ETn prediction model is used to predict the ETn of human-managed land cover types
using the corresponding meteorological, topographical and geographical data as inputs, and (4) derive the anthropo-
genic ET (ETh) by subtracting the natural ET from the total ET (ETt) for human-managed land cover types. Take 2017
as an example, ETn and ETh for rainfed agriculture, mosaic agriculture, irrigated agriculture, and settlement in Colo-
rado, Blue Nile, and Heihe Basin were separated by the proposed framework, with R2 and NSE of predicted ETn

above 0.95 and RB within 1% for all three basins. In the semi-arid Colorado River Basin and arid Heihe Basin,
human activities on human-managed land cover types tended to increase ET higher than humid Blue Nile Basin.
The anthropogenic contribution to total water consumption is approaching 53.68%, 66.47%, and 6.14% for the four
human-managed land cover types in Colorado River Basin, Heihe Bain and Blue Nile Basin, respectively. The
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framework provides strong support for the disturbance of water resources by different anthropogenic activities at the
basin scale and the accurate estimation of the impact of human activities on ET to help achieve water-related sustain-
able development goals.
1. Introduction

Actual EvapoTranspiration (ET) is a key variable linking ecosystem
function, carbon, climate change, agricultural management, and water re-
sources (Fisher et al., 2017). As the largest water consumption, ET account
for 2/3 of global terrestrial precipitation (Oki and Kanae, 2006). In the past
15 years, Global terrestrial ET has shown an increasing trend (Pascolini-
Campbell et al., 2021; Zhang et al., 2019). Regional runoff management
and the expansion of irrigation increased freshwater consumption of
3563 ± 979 km3 yr−1 from 1901–1954 to 1955–2008 (Jaramillo and
Destouni, 2015). Of all human activities, agriculture is the largest user
and consumer of water resources, with irrigation accounting for 70% of
total global water use for human activities (Döll and Siebert, 2002;
Siebert et al., 2010). The total annual global water consumption for irriga-
tion is estimated at 1250 km3 (Hoff et al., 2010), accounting for 87% of
total water consumption for human activities (Döll and Siebert, 2002).
Human activities are considered a major contributor to the increased ET
and ecosystem damage. A study by Zou et al. (2017) found that human ag-
ricultural activities and climate change increased ET per unit area at rates of
53.86–60.93% and 28.01%–35.68% in the agricultural areas of the Heihe
Basin (Zou et al., 2017). The “Grain to Green” revegetation program on
the Loess Plateau in China has led to an increase of ET, causing regional
water consumption to be approaching the limits of sustainable water re-
sources (Feng et al., 2016). Therefore, controlling and reducing ET from
human activities is key to achieving water-related sustainable develop-
ments goals (SDG 6) of the United Nations (Ho et al., 2020; Taing et al.,
2021).

In order to quantify the total water consumption, several evapotranspi-
ration models have been developed over the past decades, which have pro-
duced several regional and global evapotranspiration remote sensing
products (FAO and IHE Delft, 2020; Senay et al., 2013; Zhang et al.,
2019). For example, the operational Simplified Surface Energy Balance
model (SSEBop) has produced decadal, monthly, and annual ET products
at 1000 m spatial resolution since 2003 (Senay et al., 2013). The
Penman-Monteith-Leuning model (PML) has generated global ET products
at 500m spatial resolution from2002 to 2017 (Zhang et al., 2019). The cur-
rent study found that trends in different ET datasets showed significant dif-
ferences in magnitude and direction (Kim et al., 2021). For this reason,
different fusion methods have been proposed to synthesize ET (Elnashar
et al., 2021b; Wang et al., 2021). For example, Elnashar et al. (2021b)
used a data fusion approach to generate a global monthly evapotranspira-
tion dataset with a spatial resolution of 1000 m from 1982 to 2019. These
ET data can provide data support for assessing a basin scale's total water
consumption.

However, it is not enough to know the total water consumption in the
basin, but the role and contribution of human activities in ET need to be
clarified to support water consumption regulation. It is extremely challeng-
ing to separate the contribution of natural and human activities to ET and
quantitatively assess the impact of different human activities on ET. Due
to the diversity and complexity of human activities compounded with cli-
mate change (Mao et al., 2015), it is difficult to calculate the contribution
of human activities to ET directly. Therefore, current studies generally use
indirect methods to estimate the contribution of human activities to ET.
These approaches first calculate ET due to natural factors (herein defined
as ETn) and then calculate the difference between total ET and ETn as the
anthropogenic contribution to ET (ETh).

ETn can be described as ETn=ω ∗ P, where P is precipitation, and ω is a
coefficient between 0 and 1, which varies with climate, terrain, and soil
conditions (Bastiaanssen et al., 2014). ω is often set as a constant value to
estimate ETn at the basin scale, such as the Nile River Basin (Bastiaanssen
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et al., 2014), Incomati Basin (van Eekelen et al., 2015), and Lake Ebinur
(Zeng et al., 2019). These approaches rely heavily on expert experience
and are subject to uncertainty due to the significant heterogeneity of the
watershed. In order to reduce uncertainties, some equations based on arid-
ity index have been proposed to estimate the ω, such as the Budyko curve
(Budyko, 1974), but these empirical equations ignore the influence of to-
pography, soil, and geographical factors on ω, resulting in widely varying
ω values obtained with different empirical equations.

The development of remote sensing technology provides new solutions
for the estimation of ETn. The coupledGravity Recovery and Climate Exper-
iment (GRACE) data and land surface hydrological models approach are
currently the main methods for separating anthropogenic contributions
and natural factors. The method uses GRACE data to estimate total ET
and a surface hydrological model to estimate ETwithout anthropogenic dis-
turbance; the difference of them is the anthropogenic contribution to the
total ET (Castle et al., 2016; Pan et al., 2017). Using this method, Castle es-
timated that human activities contributed 12% of the total ET of the Colo-
rado River Basin (Castle et al., 2016), and Pan determined that human
activities caused a 12% increase in ET in the Haihe Basin (Pan et al.,
2017). However, there are obvious shortcomings in this method. One is
the coarse spatial resolution of GRACE data, which is only suitable for wa-
tersheds larger than 200,000 km2 (Rodell and Famiglietti, 1999); second is
that the regional gravity change signal reflected by GRACE is not only the
change of water storage but also includes the gravity change caused by en-
ergy and mineral extraction and the entry and exit of goods in the region.
For example, in the North China Plain, the gravity anomaly caused by
coal transportation reaches 1.9 mm yr−1 (Tang et al., 2013). Third, the
method can only calculate the impact of human activities on the total ET
of the basin but cannot quantify the amount of change in basin ET caused
by different human activities, such as irrigated and rainfed croplands.

The scenario assumption is another way to estimate ETn, taking the sep-
aration of natural and anthropogenic water consumption in cropland as an
example, which treats the ET generated from uncropped land as the ET gen-
erated by natural factors, and then uses spatial interpolation to estimate the
natural ET from cropland in the entire study area. The difference between
total ET and natural ET is the ET generated by anthropogenic activities in
cropland (Wu et al., 2018). However, this approach is greatly limited by
the number of uncropped land pixels and spatial distribution, resulting in
large errors in separating natural and anthropogenic ET.

Land cover can be regarded as a bridge to distinguish between natural
and anthropogenic properties of ET. A shift in land cover type due to
human activities can alter soil water content and the water cycle, increase
(weaken) the ET capacity of vegetation, and change the magnitude of re-
gional ET. The distinction between natural and anthropogenic properties
of ET has also been developed based on land cover properties (van
Eekelen et al., 2015). For example, Karimi et al. (2013) classified land use
into “conserved land use”, “utilized land use”, “modulated land use”, and
“artificial land use” based on the characteristics of land use, and proposed
the water accounting (WA+) framework. Bastiaanssen et al. used the
WA+ framework to account for water production and consumption in
the Nile Basin (Bastiaanssen et al., 2014). However, this framework also
does not address the separation of natural and anthropogenic ET in artificial
land cover.

The mechanisms of regional water depletion by climate change and
human activities are complex. Climate change exacerbates regional water
scarcity (Gosling and Arnell, 2016), particularly as 15% of the global popu-
lation will face severe water scarcity when global temperatures rise by 2 °C
(Schewe et al., 2014). The effects of irrigation on ET from agricultural land
are complex (Ozdogan et al., 2010); agricultural land under irrigation
changes soil water content, water availability and distribution, soil
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temperature, surface fluxes, and ET (Leng et al., 2014). Under the influence
of climate change, increasing irrigation water demand could lead to local
and regional irrigation water crises (Leng et al., 2015). Therefore, it is im-
portant to specify the amount of water consumed on agricultural land due
to cultivation and management to achieve sustainable agricultural water
management.

Machine learning (ML) and cloud computing have flourished in recent
years. Machine learning and deep learning are widely used in landcover
classification, change detection, and image feature extraction but are lim-
ited in water resources studies (Shen, 2018). However, it has already
shown a powerful mining capability in hydrological studies. For instance,
ML was used to estimate production flow coefficients (Yan et al., 2019),
streamflow modeling (McNamara et al., 2021), and spatiotemporal down-
scaling of precipitation (Elnashar et al., 2020). In this study, we employed
the ML to separate between natural and anthropogenic properties of ET.
To the best of our knowledge, this is the first time ML has been used to sep-
arate ET. Furthermore, ML requires powerful computational resources.
With the development of earth observation technologies, particularly the
emergence of remote sensing big data cloud platforms that provide power-
ful computing, data processing, and analytical capabilities, such as Google
Earth Engine (GEE) (Gorelick et al., 2017). GEE has been successfully
used in some environmental studies to retrieve and process Earth observa-
tion data (e.g., Elnashar et al., 2021c; Zeng et al., 2020). New opportunities
are available to quantify the impact of large regional scales, complex cli-
mate change, and human activities on ET.

This study intends to clarify the contributions of natural factors and
human activities to ET of human-managed land cover types from a data-
driven perspective using the powerful data mining capabilities and cloud
computing capacity. The objectives of this study include (1) constructing
Fig. 1. The geographical location of the Colorado River
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a framework to separate natural and anthropogenic contributions to ET of
managing land covers in watersheds at the pixel level; (2) quantifying the
role and contribution of human activities in ET of human-managed land
cover types in the Colorado River Basin, Blue Nile Basin, and Heihe Basin.

2. Data and method

2.1. Study area

The Colorado River Basin, Blue Nile Basin, and Heihe Basin are selected
as the study area (Fig. 1 and Table 1). Colorado River Basin includes parts of
seven U.S. states and Mexico. The Colorado River Basin covers approxi-
mately 630,000 km2 and is dominated by a semi-arid climate with an aver-
age annual precipitation of 400 mm yr−1. 79% of the flow originates from
snowmelt, and 15% of the area contributes 85% of the streamflow
(Christensen and Lettenmaier, 2007). The Blue Nile Basin is located in East-
ern Africa and is shared by Ethiopia and Sudan, with an approximate drain-
age area of 312,000 km2. The Inter-Tropical Convergence Zone dominates
the upper Blue Nile Basin climate, and the semi-arid climate controls the
downstream in Sudan (Taye et al., 2015). The annual average precipitation
and ET of the Blue Nile Basin estimated by remote sensing data were about
978 mm yr−1 and 737 mm yr−1, respectively (Bastiaanssen et al., 2014).
The Blue Nile Basin contributes approximately 60% of the total river flow
of the Nile River, reaching Aswan High Dam in Egypt (Senay et al.,
2014). The Heihe Basin is the second-longest inland basin in China, covers
143,200 km2, and has a high altitude, complex terrain, various ecosystems,
and harsh climate (Che et al., 2019). Frozen soil water, glacial or snow
meltwater, and precipitation contributes 11%, 23%, and 66% of stream-
flow of the Heihe Basin, and its glaciated areas shrank by 30.0% due to
Basin (a), Blue Nile Basin (b), and Heihe Basin (c).

Image of Fig. 1


Table 1
Features summary of Colorado River Basin, Blue Nile Basin, and Heihe Basin.

Basin name Area (km2) Climate Contributor of runoff (%) Water issues

Colorado River 630,000 Semi-arid Snowmelt (79) Allocation of water rights
Blue Nile 312,000 Humid (Ethiopia), semi-arid (Sudan) Precipitation (100) Soil erosion, water conflict between upper and downstream
Heihe 143,200 Arid Precipitation (66)

Snowmelt (23)
Frozen soil water (11)

Ecological damage caused by over-consumption of irrigation water for agriculture
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the warming trend (Chen et al., 2019b). The runoff flow of the Heihe River
from the QilianMountains is the only water source for industry and agricul-
ture in the arid middle and downstream areas (Kang et al., 1999).

2.2. Data

The free and open data sources fromGEE, including the ET,meteorolog-
ical, topographic, and geographic data, are used to promote the public us-
ability of this work.

2.2.1. Evapotranspiration
Several satellite-based ET models have been developed to quantify the

total water consumption of watersheds over the past decades, while these
satellite-based ET products are subject to biases in their algorithms, param-
eters, and inputs (Wang and Dickinson, 2012; Weerasinghe et al., 2020; Xu
et al., 2019). These uncertainties can be reduced by synthesizing multiple
satellite ET products under different conditions using different strategies
(Badgley et al., 2015; Mueller et al., 2013; Vinukollu et al., 2011; Wang
et al., 2021). For this purpose, the synthesized ET product at a 1 km spatial
resolution for 2017 was used in this study (Elnashar et al., 2021b). This
dataset was generated from the simple average of the Penman-Monteith-
Leuning (PML) (Zhang et al., 2019) and the operational Simplified Surface
Energy Balance (SSEBop) (Senay et al., 2013) remote sensing ET products.
It can be retrieved from the following link: https://doi.org/10.7910/DVN/
ZGOUED.

2.2.2. Environmental factors
Meteorological, topographic, geographic location data are used as input

variables to build the ET separation model in the RFR algorithm. To avoid
the interference of the difference of data magnitude on the regression
model construction, this study standardized all features by their mean
and standard deviation to eliminate the effects of different scales
(Elnashar et al., 2020).

2.2.2.1. Meteorological data. In this study, precipitation (P), downward long-
wave radiation flux (LWdown), downward shortwave radiation flux
(DWdown), air temperature (Tair), wind speed (Wind), Pressure (Psurf),
and specific humidity (Qair) are used as meteorological factors to build
ET contribution separation model. Precipitation data were generated from
the Climate Hazards Group InfraRed Precipitation with Station data
(CHIRPS) (Funk et al., 2015). CHIRPS is a daily 0.05° × 0.05° (≈5 km)
grid cell quasi-global rainfall dataset from 1981. It creates a gridded rainfall
product by incorporating the remotely sensed precipitation with in-situ sta-
tion data. LWdown, downward, DWdown, Tair,Wind, and Psurf with a spa-
tial resolution of 0.25°(≈25 km)were generated from the Global Land Data
Assimilation System (GLDAS-2.1) (Rodell et al., 2004). GLDAS-2.1 was pre-
ferred given it combined satellite and ground-based observations and gen-
erated optimal fields of land surface states and fluxes through advanced
surface modeling and data assimilation techniques. Furthermore, it was
widely used in similar previous studies (e.g., Ning et al., 2014; Zhang
et al., 2019; Zhao et al., 2014). Bilinear interpolation in the GEE environ-
ment was used to interpolate the coarse resolution of GLDAS to 1 km spatial
resolution, and the method was widely used to minimize the footprint im-
pact of coarse resolution inputs (Ershadi et al., 2013; Zhang et al., 2019).
The use of the GLDAS dataset is considered a good way to overcome the in-
adequacy of the observed dataset. Besides, the minimum temperature
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(Tmin), maximum temperature (Tmax), water vapor pressure (Pwv), sunshine
duration (SD), shortwave radiation (SW), and precipitation (P) gridded
data at a spatial resolution of 1 km from the fourth version of the Daymet
dataset (Daymet V4) (Thornton et al., 2020), derived from weather station
data and various ancillary data sources, were also used in the Colorado
River Basin.

2.2.2.2. Topographic data. The topographic datasets used in this study in-
clude elevation (Ele), slope (Slo), and aspect (Asp) datasets. Elevation was
obtained from the Shuttle Radar Topography Mission (SRTM) version 4
data (Jarvis et al., 2008) with a spatial resolution of 90m. The slope and as-
pect datasetswere generated based on this data using the spatial calculation
method in the GEE environment (Gorelick et al., 2017).

2.2.2.3. Geographic location. The geographic location data used in this study
include longitude and latitude datasets at 1 km spatial resolution generated
by calling the longitude and latitude calculation module in the GEE envi-
ronment (Gorelick et al., 2017).

2.2.3. Land cover
Landcover data is derived from the European Space Agency (ESA)

Climate Change Initiative Land Cover (ESA-CCI-LC) (Bontemps et al.,
2012) with a spatial resolution of 300 m. This data extends from 1992 to
2019 with 37 land cover classes (ESA, 2015; ESA, 2018), and it is widely
used in land cover transitions (Liu et al., 2018), land cover change
(Mousivand and Arsanjani, 2019), gross and net land cover changes in
the main plant functional types (Li et al., 2018b), hydrological modeling
and climate change studies (Ayehu et al., 2020; Clark et al., 2017;
Georgievski and Hagemann, 2019; Jaafar et al., 2019; Li et al., 2018a;
Nkiaka et al., 2018; Osei et al., 2019; Tan et al., 2021). ESA-CCI-LC contains
rainfed agriculture, mosaic agriculture, irrigated agriculture, and settle-
ment, which is useful for quantifying the impact of the cultivation, irriga-
tion, and urban construction on water consumption. Referring to the
reclassification of CCI-LC by others (Mousivand and Arsanjani, 2019;
Reinhart et al., 2021) and considering the natural and anthropogenic use at-
tributes of land cover, the original LULC class values of CCI-LC were classi-
fied into the following six classes (Supplementary Table 1): Class 1: rainfed
agriculture; Class 2: mosaic agriculture; Class 3: irrigated agriculture; Class
4: settlement; Class 5: water; and Class 6: natural land cover.

2.3. Method

2.3.1. Conceptual framework
Normally, in the absence of human intervention, ET from natural land

cover is generated by natural factors, such as meteorological, topographic,
geographic factors. When the land cover types are converted from natural
land cover to managed land use due to human activities, such as forest to
cropland, the ET drivers will extend from the natural factors to natural
and anthropogenic factors. Therefore, ET from managed land use can be
decomposed into natural ET (ETn) and human-induced ET (ETh) (Wu
et al., 2018), with the following equation:

ETt ¼ ETn þ ETh (1)

where ETt is the total ET of managed land use, ETn is the ET fraction of
managed land use contributed by natural factors, and ETh is the ET fraction

https://doi.org/10.7910/DVN/ZGOUED
https://doi.org/10.7910/DVN/ZGOUED
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of managed land use caused by different human activities in the watershed,
such as cultivation, irrigated, impervious surface building. Therefore, ETh
can be expressed as:

ETh ¼ ETt−ETn (2)

If ETh is greater than 0, human activities on managed land use increase
water consumption; otherwise, human activities on managed land use de-
crease water consumption. Assuming that ETn can be determined by mete-
orology (Met), topography (Top), and geographic location (Geo) without
anthropogenic disturbances, ETn is characterized as follows:

ETn ¼ F Met,Top,Geoð Þ (3)

To predict the ETn for managed land use, this study first distinguishes
land cover in the study area into natural and human-managed land cover
types according to land use (Section 2.2.3) and then divide the ET, Met,
Top, and Geo datasets into two parts corresponding to natural land cover
and human-managed land cover types. Without considering the interaction
between natural and human-managed land cover types, this study assumes
that natural forces generate ET of natural land cover types exclusively. It is
worth noting that pixels with annual P > ET refer to net water producer of
natural land covers and ensure that all ET is derived from P without the in-
fluence of human activities through irrigation, groundwater recharge, seep-
age, or base flow (Bastiaanssen et al., 2014; van Eekelen et al., 2015).
Therefore, those pixels of natural land covers with annual P < ET were ex-
cluded from the ET separation modeling. This study developed the ETn pre-
diction model based on this assumption by exploring the links between
Met, Top, and Geo parameters and ET corresponding to natural land
cover types by RFR algorithm. RFR is an ensemble learning method with
solid data mining capability, which trains multiple weak models and pack-
ages them to form a robust model (Breiman, 2001). The established predic-
tion model predicts ETn of human-managed land cover types (rainfed,
mosaic, irrigated agriculture, and settlement) using Met, Top, and Geo
Fig. 2. Conceptual framework of the method on the separation of natu
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parameters corresponding to the human-managed land cover types as in-
puts. Finally, the total ET of the human-managed land cover type is
subtracted from the predicted ETn to obtain the ETh, thus separating ETn
and ETh of the human-managed land cover types. The study idea is illus-
trated in Fig. 2.

2.3.2. ET separation modeling
Meteorological parameters are key factors influencing ET. ET is closely

related to net radiation, air temperature, water vapor pressure, and normal-
ized vegetation index. For example, the total annual net radiation, average
annual precipitation, and average annual air temperature are the main fac-
tors affecting annual ET and explain 84% of the spatial variation of the an-
nual ET in China (Zheng et al., 2016). The interannual variation of ET was
closely related to potential ET and precipitation (Zhang et al., 2016), with
potential ET being the largest factor affecting ET when the aridity index
≤0.76 and precipitation being the largest factor affecting ETwhen the arid-
ity index >0.76. In the Haihe Basin, the trend of annual ET was closely re-
lated to vegetation cover, wind speed, and air pressure (Yan et al., 2018).
ET was closely related to wind speed and vegetation cover in the Loess Pla-
teau, followed by atmospheric pressure, air humidity, precipitation, sun-
shine hours, and temperature (Ma et al., 2019). Meteorological conditions
are closely linked to atmospheric conditions and are strongly influenced
by topography and geographical location. Therefore, this study first ex-
plores the intrinsic links between annual Met (P, LWdown, Tair, DWdown,
Wind, Psurf, Qair), Top (Ele, Slo, and Asp), Geo (Lon, and Lat), and ET from
natural land cover to construct the ETn prediction model. Then use this
model to predict ETn of human-managed land cover types. Finally, obtain
the ETh of human-managed land cover types according to Eq. (2). This
study illustrates our methodology at Colorado, Blue Nile, and Heihe Basins
in the following four steps using 2017 data (Section 2.2) as an example
(Fig. 3).

Step 1: Divide the land cover into natural and human-managed land
cover categories (Section 2.2.3), based on which ET and its corresponding
annual Met factors (P, LWdown, Tair, DWdown, Wind, Psurf, Qair), Top
ral ET and anthropogenic ET of human-managed land cover types.

Image of Fig. 2


Fig. 3. Flowchart of ETn and ETh separation of human-managed land cover types.
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factors (Ele, Slo, Asp), and Geo factors (Lon and Lat) datasets were also
divided into their corresponding natural and managed categories.

Step 2: Based on the natural land cover categories with their corre-
sponding ET and environmental variables data, the RFR is employed to
mine the intrinsic links between ETn and annual-Met, Top, and Geo factors
to build ETn prediction model (GLDAS ETn model).

ETn ¼ F P,LWdown,Tair,DWdown,Wind,Psurf,Qair,Ele, Slo,Asp,Lat,Lonð Þ
(4)

These data were split into training and validation groups at 75% and
25%, respectively. The validation sizes (25% of the total size) for Colorado,
Blue Nile, and Heihe Basins in this study were 59,883, 13,577, and 18,893,
respectively, ensuring the credibility of the machine learning-based ET pre-
diction models in the three basins. The grid search algorithm with a cross-
validation approach (Pedregosa et al., 2011) is employed to optimize the
hyper-parameters of the RFR algorithm (e.g., Elnashar et al., 2020; Jing
et al., 2016; Jing et al., 2017).

Step 3: The ETn prediction model was used to predict the ETn caused by
natural factors on managed land use using the corresponding predictor var-
iables for human-managed land cover types.

Step 4: Subtract the ETn of the managed land vegetation predicted in
Step 3 from the total ET of the managed land cover in Step 1 to calculate
the ETh of the human-managed land cover types.

2.3.3. Model's performance assessment
The ETn predicted results were assessed by five statistical indices (Su

et al., 2008; Zhao et al., 2017), including the correlation coefficient (R2),
mean absolute error (MAE), root mean square error (RMSE), relative bias
(RB), and Nash–Sutcliffe coefficient of efficiency (NSE). From Step 2
(Section 2.3.2), predicted ETn is the ET predicted from environmental
6

variables using RFR, while the reference ET is the ET of the validation
group. R2 represents a linear correlation between predicted ETn and the ref-
erence ET. RB is the relative difference between predicted ETn and the ref-
erence ET. RMSE is the error between ETn and reference ET (mmyr−1). The
Nash-Sutcliffe efficiency coefficient (NSE) is used to assess the efficiency of
ETn prediction models. The perfect value of R2, RB, RMSE, MAE, and NSE
are 1, 0, 0, 0, and 1, respectively.

3. Results

3.1. ET separation

Based on the framework presented in Fig. 3, this study generated ETt,
ETn, and ETh for four management types, namely rainfed agriculture, mo-
saic agriculture, irrigated agriculture, and settlement, for the Colorado
River Basin, Blue Nile Basin, and Heihe Basin in 2017 (Fig. 4).

In the Colorado River Basin, the contribution of human activities to
water consumption in rainfed agriculture, mosaic agriculture, and settle-
ment all show an increasing effect. The rates of ETt for these three types
were 500.8 mm yr−1, 552.4 mm yr−1, and 325.6 mm yr−1, corresponding
to the total water consumption of 9676× 106 m3 yr−1. The rates of ETn for
these three managed land uses are 308.0 mm yr−1, 237.8 mm yr−1, and
182.4 mm yr−1, corresponding to the total water consumption of 4482 ×
106 m3 yr−1, representing 46.32% of the total water consumption of the
three managed land uses. The rates of ETh is 192.8 mm yr−1, 314.6 mm
yr−1, and 143.2 mm yr−1, corresponding to the total water consumption
of 5194 × 106 m3 yr−1, representing 53.68% of the total water consump-
tion of the three managed land uses.

In the BlueNile Basin, the contribution of human activities towater con-
sumption in rainfed agriculture, mosaic agriculture, irrigated agriculture,
and settlement all show an increasing effect. The rates of ETt for rainfed

Image of Fig. 3


Fig. 4. Colorado River Basin (a), Blue Nile Basin (b), and Heihe Basin (c); total ET (1: left), natural ET (2: middle), and anthropogenic ET (3: right).
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agriculture, mosaic agriculture, irrigated agriculture, and settlement were
686.4 mm yr−1, 753.1 mm yr−1, 513.4 yr−1, and 509.5 mm yr−1, respec-
tively, with estimated total water consumption of 91,819 × 106 m3 yr−1.
Human activities increase the rates of ETt of the four managed land uses
by 44.6 mm yr−1, 16.4 mm yr−1, 163.9 mm yr−1, and 98.2 mm yr−1, re-
spectively, totaling 5640 × 106 m3 yr−1 approaching 6.14% of the total
water consumption while ETn counts for 93.86% of the total water con-
sumption.

In the Heihe Basin, the impact of human activities on water consump-
tion in rainfed agriculture, mosaic agriculture, irrigation agriculture, and
settlement is reflected in a strong increasing effect. The ETt rates for four
managed land uses were 432.0 mm yr−1, 360.3 mm yr−1, 420.9 mm
yr−1, and 249.5 mm yr−1, respectively, corresponding to the total water
consumption of 2982 × 106 m3 yr−1. The ETn rates for the four managed
land uses were134.0 mm yr−1, 185.8 mm yr−1, 66.0 mm yr−1, and
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60.5 mm yr−1, respectively, corresponding to 1000 × 106 m3 yr−1, ac-
counting for 33.53% of the total water consumption. The rates of ETh for
the four managed land uses were 298.0 mm yr−1, 174.4 mm yr−1,
354.9 mm yr−1, and 189.1 mm yr−1, respectively, corresponding to the
total water consumption of 1982 × 106 m3 yr−1, accounting for 66.47%
of the total water consumption of the four managed land uses.

3.2. Model performance

This study developed three ETn prediction models at 1 km driven by 12
environmental predictors in Colorado, Blue Nile, andHeihe Basins. All indi-
cators are showed that three ETn prediction models had good predictive
performance (Fig. 5). The predicted results of ETn has an excellent correla-
tion with remote sensing ET result; both R2 and NSE of the Colorado River
Basin, Blue Nile Basin, and Heihe Basin are 0.96, 0.98, and 0.99,

Image of Fig. 4


Fig. 5. Cross-validation of ETn prediction in Colorado River Basin (left), Blue Nile Basin (middle), and Heihe Basin (right) in 2017.
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respectively, implying that the predicted results of ETn matched well with
the remote sensing ET. A minimal magnitude of relative bias (RB) was
observed in the Colorado River Basin (RB = −0.13%), Blue Nile Basin
(RB= 0.02%), and Heihe Basin (RB=−0.03%). Theminor errors are ob-
served by MAE, and RMSE in the Colorado River Basin (MAE= 20.15 mm
yr−1, RMSE= 32.54 mm yr−1), Blue Nile Basin (MAE= 26.61 mm yr−1,
RMSE= 36.06 mm yr−1), and Heihe Basin (MAE= 3.06 mm yr−1, RMSE
= 9.72 mm yr−1), respectively. Besides, the scatter points were almost al-
ways distributed around the 1:1 line, indicating the good performance of
the ETn model developed in the three basins. The excellent performance
of the three ETn models confirms the validity of the ETn prediction model
proposed in this study to predict the annual ET caused by natural factors
using annual-Met, Top, and Geo datasets.

This study assessed the importance of 12 environmental predictors in
the ETn prediction model for the Colorado, Blue Nile, and Heihe Basins
assessed by RFR (Table 3). The importance of the environmental predictors
in the natural ET prediction models varied with climate and regions. In the
semi-arid Colorado River Basin, the top 5 environmental predictors were P,
Qair, Ele, Lat, and Lon, accounting for 72.94%, 5.94%, 5.82%, 5.02%, and
2.88%, respectively. Similarly, in the arid Heihe Basin, P, Qair, Ele, Lat, and
Lon were among the top 5 environmental predictors, but their weights on
ETn were 95.08%, 1.61%, 0.95%, 0.84%, and 0.66%, respectively.
Whereas in the humid Blue Nile basin, P, Qair, Wind, Ele, and Tair were
ranked as the top 5 environmental predictors with weights of 69.88%,
17.94%, 2.66%, 2.21%, and 1.66%, respectively.

4. Discussions

This study proposed a framework for separating the contribution of nat-
ural and anthropogenic factors to ET of human-managed land cover types,
effectively quantifying the contribution of natural processes and human
Table 2
ETt, ETn, and ETh for human-managed land cover types in 2017.

Basin LULC Area ETt

km2 mm

Colorado River Rainfed agriculture 1095 500.8
Colorado River Mosaic agriculture 13,524 552.4
Colorado River Irrigated agriculture – –
Colorado River Settlement 5089 325.6
Blue Nile Rainfed agriculture 60,034 686.4
Blue Nile Mosaic agriculture 58,787 753.1
Blue Nile Irrigated agriculture 11,933 513.4
Blue Nile Settlement 417 509.5
Heihe Rainfed agriculture 2661 432.0
Heihe Mosaic agriculture 2727 360.3
Heihe Irrigated agriculture 1927 420.9
Heihe Settlement 154 249.5
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activities to ET from human-managed land cover types, and has been suc-
cessfully demonstrated in the Colorado River Basin, Blue Nile Basin, and
Heihe Basin. The method quantifies the amount of change in water con-
sumption by human activities at the pixel level and can measure the
water consumption effects of different human activities, supporting the reg-
ulation of water resources at the basin scale.

4.1. ET due to anthropogenic interventions

The variation in the magnitude of the anthropogenic ET is related to cli-
mate type, with all human-managed land cover types in the study area
showing an increasing trend in total water consumption. The Colorado
River Basin and the Heihe Basin are located in semi-arid and arid regions,
respectively, and human activities in both basins have amore significant ef-
fect on increased ET than in the Blue Nile Basin,where 64%of the total area
is located in the humid region (Elnashar et al., 2022). Previous studies sup-
ported our findings (Castle et al., 2016; Hurni et al., 2005; Zou et al., 2017).
A study from the Heihe Basin showed that human activities were the lead-
ing cause of the increase in ET in agricultural areas from 1984 to 2014 at
rates of 53.86–60.93% (Zou et al., 2017). Our result in Table 2 showed
that the human activities in the Heihe Basin increased the total ET of agri-
cultural areas by 66.47%, which is slightly higher than the findings of Zou
et al. (2017), indicating a more profound impact of human activities on ag-
ricultural water consumption in Heihe Basin. A study from the Colorado
River Basin indicated that human activities increased water consumption,
the trend is consistent with our finding (Castle et al., 2016). The study esti-
mated that the average annual anthropogenic ET of the entire Colorado
River Basin was 21.0 ± 12.3 km3 yr−1 from 2003 to 2013, and our study
estimated that the annual anthropogenic ET was 5.194 km3 yr−1 in 2017.
It is worth noting that the results of Castle et al. (2016) are higher than
our results mainly because it was estimated using GRACE data, which
ETn ETh

106 m3 mm 106 m3 mm 106 m3

548.4 308.0 337.3 192.8 211.1
7470.8 237.8 3216.4 314.6 4254.5
– – – – –
1657.1 182.4 928.2 143.2 728.8
41,208.5 641.8 38,532.0 44.6 2676.5
44,272.0 736.6 43,305.2 16.4 966.8
6126.0 349.5 4170.3 163.9 1955.7
212.5 411.3 171.5 98.2 41.0
1149.5 134.0 356.5 298.0 793.0
982.5 185.8 506.8 174.4 475.7
811.1 66.0 127.2 354.9 683.9
38.4 60.5 9.3 189.1 29.1

Image of Fig. 5


Table 3
Features importance in the regression model by RFR in 2017.

Basin Lon Lat Asp Slo Ele Tair Psurf Qair SWdown P LWdown Wind

Colorado 2.88 5.02 0.56 1.43 5.82 1.25 1.07 5.94 1.37 72.94 0.53 1.20
Blue Nile 1.62 1.07 0.23 0.95 2.21 1.66 0.36 17.94 0.78 69.88 0.65 2.66
Heihe 0.66 0.84 0.14 0.16 0.95 0.13 0.04 1.61 0.05 95.08 0.30 0.03

Table 4
ETt, ETn, and ETh (mm yr−1) from Daymet over Colorado River Basin and WAPOR
ET over the Blue Nile Basin in 2017.

LULC Daymet (Colorado River
Basin)

WAPOR (Blue Nile Basin)

ETt ETn ETh ETt ETn ETh

Rainfed agriculture 500.8 298.6 202.3 781.5 695.7 85.8
Mosaic agriculture 552.1 216.8 335.3 856.0 797.5 58.5
Irrigated agriculture – – – 786.8 402.1 384.7
Settlement 325.0 175.4 149.6 546.7 456.2 90.4
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included water loss due to ET from reservoirs and interbasin water alloca-
tion (Christensen et al., 2004). When added to 5.43 km3 yr−1 of annual
water allocated to California (outside the Colorado River Basin) (Swanson
et al., 2021) and 1.85 km3 yr−1 of reservoirs ET (Castle et al., 2016), an-
thropogenic ET of Colorado in 2018 is 12.474 km3 yr−1 which is compara-
ble to the results of Castle et al. (2016). Therefore, all types of human
activities in arid and semi-arid areas have to consider their impact on the
availability of regional water resources. The findings that human activities
in arid and semi-arid regions have increased water consumption was also
supported by other previous studies, such as the ‘Grain to Green’ revegeta-
tion program on the Loess Plateau in China caused regional water consump-
tion to approach the limits of sustainable water resources (Feng et al.,
2016). The expansion of irrigated arable land has increased water con-
sumption, resulting in the rapid shrinkage of Lake Ebinur (Zeng et al.,
2019). In the Blue Nile Basin, Table 2 showed that the human activities
also increased the ET of all managed land covers, but much less than the
human-induced ET in the Colorado River Basin and Heihe Basin. This can
be attributed to the predominantly humid climate of the Blue Nile basin,
where abundant precipitation provides abundant soil water for crop growth
without the need for additional irrigation water (Camberlin, 2009).
Fig. 6. Performance validation of ETn based on Daymet over Colorado Rive
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4.2. Uncertainties of ET separation model

To test the effects of different meteorological data sources on the ETn pre-
dictionmodel, Daymet datasets were usedwith the same Top andGeo factors
as Fig. 5 to build a new ETn prediction model (Daymet ETn model) over the
Colorado River Basin. From Fig. 5 (left) compared to Fig. 6 (left), the two re-
sults are very similar, with the same R2 and NSE values; however, the GLDAS
ETn model returned lower MAE and RMSE than the Daymet ETn model, for
that this study selected the GLDAS ETn model to predict the 2017 ETn of Col-
oradoRiver Basin. ETn and ETh fromDaymet ETnmodel (Table 4) andGLDAS
ETnmodel (Table 2) are very close, inwhich ETh predicted by theDaymet ETn
model was 9.5 mm yr−1 and 20.7 mm yr−1 and 6.4 mm yr−1 lower for
rainfed, mosaic, and settlement than that predicted by the GLDAS ETnmodel.

In addition, as ET represents the combined effect of natural and anthro-
pogenic water consumption, improving the accuracy and spatial resolution
of remotely sensed ET is also one of the keys to better differentiating be-
tween ET's natural and anthropogenic contributions. Herein, we changed
the ET data of the Blue Nile Basin to WAPOR ET data (FAO, 2020). The
R2 and NSE for the ETn prediction model of the synthesized ET from
Fig. 5 (right) and the WAPOR ET from Fig. 6 (right) are the same, but the
MAE and RMSE metrics showed that the synthesized ET-based prediction
model provided reduced biases and higher accuracy. In addition, similar
to the synthesized ET results (Table 2; Blue Nile), the WAPOR ET data
(Table 4) reveal that human activities also increase ET compared to the nat-
ural state. These results confirm the stability of the regression model in ET
separation for extracting human activity's direction on ET. The difference is
found in the magnitude of the human-induced ET, implying that these dif-
ferences are due to the ET data source and not the regression model. A re-
cent study by McNamara et al. (2021) confirmed the superiority of PML
overWAPOR in the Nile Basin. Current ET products have some uncertainty,
and there is a need to develop a more accurate method of ET monitoring,
which is why integrated ET was chosen for this study, as it combines the
advantages of PML and SSEBop products.
r Basin (left) and WAPOR ET over the Blue Nile Basin (right) in 2017.

Image of Fig. 6
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4.3. Implications of the proposed framework

The ET separation framework proposed in this study provides an effec-
tive way to understand the impact of changing meteorological and climatic
conditions on ET and can benefit the regulation of the impact of human ac-
tivities on total water consumption at a basin scale. The geographical loca-
tion and topographic variables in the ETn prediction model are static input
variables; in contrast, the meteorological variables are dynamic input vari-
ables, so the impact of changing meteorological conditions on ET can be
assessed by inputting meteorological data from different years. On the
other hand, the impact of climate change on water consumption can also
be predicted through inputting meteorological data under different climate
change scenarios using the proposed framework. Increased water with-
drawals upstream usually lead to the reduction of downstream water sup-
ply, especially in drought years (Nikiel and Eltahir, 2021; Yoon et al.,
2015); therefore, the optimal allocation of water resources in arid and
semi-arid regions is crucial for sustainable development of dryland ecosys-
tems, food production, biodiversity conservation and ecosystems sustain-
able management (Marques et al., 2016; McClain, 2013). The proposed
framework quantifies the water consumption of different human-
managed land covers, evaluating the reasonable scale of agricultural devel-
opment at the basin scale, optimizing planting structures, identifying irriga-
tion methods to reduce water consumption and also providing
opportunities for transboundary water cooperation by separating natural
ET from anthropogenic ET. Hence, the proposed framework can help target
areas where effective ways to reduce agricultural water consumption
should be implemented (Elnashar et al., 2021a; Mojid and Mainuddin,
2021) for producing more food with less water through increased crop
water productivity (Cai et al., 2011; Nhamo et al., 2016). For example,
land use change and water resources management through reservoir regu-
lation have had a significant impact on reducing evapotranspiration (Chen
et al., 2019a), on-farm strategies reduced water input in irrigated crops
(Bouman et al., 2007; Tabbal et al., 2002), shifting planting date as climate
change adaptation strategy to reduce water use (Acharjee et al., 2019), or
water savings using greenhouses crop production (O'Connor and Mehta,
2016).

4.4. Advantages and limitations

Compared to the ET separation method coupled with GRACE data and
hydrological models (Castle et al., 2016; Pan et al., 2017), the method pro-
posed in this study has a major improvement in spatial resolution and dif-
ferentiation of human contributions. One is to quantify ET's perturbation
by human activities at a finer scale (1 km). The other is to quantify the im-
pact of different human activity behaviors on ET, such as rainfed agricul-
tural cultivation, irrigated agricultural cultivation, and settlement
building. Compared with the method based on the spatial interpolation of
ET of uncultivated cropland proposed by Wu et al. (2018), the present
method overcomes the uncertainty problem caused by the sparse interpola-
tion of the number of uncultivated cropland. Compared to the WA+
method proposed by FAO (Karimi et al., 2013), the FAO method can
broadly distinguish between types of ET based on land cover use patterns
but cannot quantify the contribution of natural and human activities to
ET in human-managed land cover types. In contrast to themethod proposed
by Zou et al. (2017), which uses statistical methods to differentiate between
human activities and climate change impacts on ET annual change, our ap-
proach can identify the contribution of human activities and the effects of
natural forcing on ET itself.

Applying the ET contribution separation method proposed in this study
also needs to be supported by fine resolution and high-precision land cover
data (e.g., Nabil et al., 2021). With the emergence of land cover products
with finer resolution, richer types and better accuracy, and the emergence
of remote sensing ET products with higher accuracy and finer resolution,
the ET separationmethod proposed in this study canmore accurately quan-
tify the contribution of different human activity behaviors to water con-
sumption, and thus provide more robust support for basin-scale water
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consumption management and regulation. In particular, crop structure, ir-
rigation, and rainfed, different human practices greatly impact ET (Zou
et al., 2017), so they need to bemapped at a finer scale to quantitatively as-
sess the impact of different agricultural interventions on water consump-
tion. For example, the difference in water consumption due to human
activities between different climatic, soil conditions, and irrigation prac-
tices for the same crop, and the difference in water consumption for differ-
ent crops under the same or different human intervention scenarios. This
plays an essential role in developing agricultural water conservation mea-
sures, particularly in arid or semi-arid basins like the Heihe or Colorado
River Basin. Copernicus CORINE Land Cover of ESA (Feranec et al., 2010;
Kallimanis and Koutsias, 2013) provides different artificial land covers aug-
mented with more specific ET data (e.g., Wang et al., 2021) can be used to
identify better the impact of different human activities on water consump-
tion in the future.

5. Conclusions

This study proposed a framework coupled with satellite-based ET, land
cover, environmental factors (meteorological, topographic, and
geolocation data), and machine learning for separating the contribution
of human activities and natural forces to ET of human-managed land
cover types based on the drivers of ET of human-managed land cover
types. Taking the year 2017 as an example, themodels built in the Colorado
River Basin, Blue Nile Basin, and Heihe Basin all had good agreements in
predicting natural ET, with R2 and NSE above 0.95 and RB within <1%.
The framework effectively distinguished the contribution of natural drivers
and human activities to ET from rainfed agriculture, mosaic agriculture, ir-
rigated agriculture, and settlement. In the semi-arid Colorado River Basin
and the arid Heihe Basin, human activities increased ET in all four
human-managed land cover types approaching 53.68% and 66.47%, re-
spectively, much more than in the Blue Nile Basin, where the human activ-
ities contributed 6.14% to the total ET. Human activities that occur in drier
basins tend to increase water depletion more than in wetter basins, and the
proposed ET separation framework provides a new tool for analyzing the
impact of climate change and human activities on ET, benefiting the sus-
tainable use and management of soil and water resources in the basin.
The concept could be applied in similar areas, given that it depends upon
free and open access data and processing environment.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.153726.
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